Safe Interprocess
Communication with
bin-prot

Bin-prot vs marshal

Properties

* No segmentation faults when the data doesn't match

the expected type!
* Comparable performance. (slower unmarshal, faster

marshal)
* Almost as easy to use

Implementation

* A camlp4 macro generates custom marshal/unmarshal
functions for each type
* Efficient binary protocol

Example

Imagine a hierarchical database where each node is a set of pairs.

type attribute = {
key: string;
values: string list
} with bin io

type node = {
name: (string * string) list;
attributes: attribute list;

} with bin io

type response =

| Error of string

| Results of node list
with bin io

We might query the database like this,

type value match = {
attribute: string;
data: string;

} with bin io

type query expr =
Equal of value match
Match of value match
And of query 1list

Or of query 1list

Not of query

with bin io

type query = {
start from: (string * string) list;
scope: [Subtree | “Base | “Onelevel];
query: query expr;

} with bin io

Example Query

So if we had a database containing people working at Z inc, then a query
to find a specific person might be,

{ start from = [“organization”, "“Z inc”];
scope = Subtree;
query =

Equal {attribute = “family-name”;
data = “Furuse”} }

And you might find Furuse-san

{ name = [“organization”, "“Z inc”;
“ou”, *“engineering”;
“uid”, *“jfuruse”];
attributes =
[{key="organization”;values=[*“Z inc”]};
{key="ou”;values=[*“Z inc”]};
{key="uid” ;values=["“jfuruse”]};
{key="first-name” ;values=["Jun”]};
{key="family-name” ;values=[“Furuse”]};
{key="title”;values=[“Engineer”]}] }

The “with bin_io” directive is read by the camlp4 macro, and used to
generate a bunch of functions, here is an overview. You get a few more
functions than this, but this is the essential set.

(* Writing *)
val bin size query : query - int
val bin write query : buf - pos:pos - query - pos

(* Reading *)
val bin read query : buf - pos ref - query

(* All the functions in a handy record *)
val bin t : query Type class.t

Nice utility functions

val bin read stream :
?max size : int ->
read : (buf -> pos : int -> len : int -> unit) ->
'a reader -> 'a

val bin dump
?header : bool -» 'a writer -» 'a - buf

So given the right kind of IO function, bin_read_stream function will
take care of all the details needed in order to read a whole value, and
bin_dump will format values so they can be read by bin_read_stream.

So now we can write a function to send a query to the database,

let query db g : con -» query - response =
let buf =
bin dump ~header:true bin query.writer g
in
send db buf;
bin read stream ~read:(read db) bin response.reader

o o
r 7

Pretty easy right!

The server side 1s nearly the same,

let process client client f
con - (query - response) - unit =
let q =
bin read stream ~read:(read client)
bin query.reader
in
let response = £ g in
let buf =
bin dump ~header:true bin response.writer
In
send client

o o
r 7

So after this small amount of code (plus a little 10 code) you're back to
working with ML types.

What About Protocol Changes?

Say we're using this application, and we want to add some extensions to
the protocol. For a specific example, say that we want to add a field to
query that tells the server whether to use a depth first vs a bredth first
traversal when querying. Can we just change the type of query?

type query = {
start from: (string * string) list;

scope: [Subtree | “Base | “Onelevel];
query: query expr;
search options: [Dfs | “Bfs] option;

If we control all the clients then we can just upgrade them all at once.
However if we don't, then the old client will not work as soon as we
upgrade the server. This is because bin_prot will expect this additional
record field 'search_options' to be present, and it won't be.

So how do we effectively deal with protocol changes. Here are two ways,

- Design a protocol that isn't tightly coupled
- Version your types

The non tightly coupled basically means using simple ML types like lists
and strings to define extensible structures. If you go this way you'll end
up manually writing functions to interpret these simple structures, and
probably turn them back into ML types, but it will still be easier than doing
all the marshaling yourself.

Type Versioning

type
type
type
Type
Type
type

Model.ml

attribute Vl.attribute
node = Vl.node

response = Vl.response

value match = Vl.value match
query expr = Vl.query expr
query = V2.query

let query of vl v =
{ V2.start from = v.Vl.start from;

scope = v.Vl.scope;
query = v.Vl.query expr;
search options = None }

let vl of query gq =
{ Vl.start from = g.start from;
scope = J.scope€e;
query = g.query
(* We have to ignore search options
because it isn't supported in protocol
Version 1 *) }

I'll leave out the necessary changes to the server, but they are pretty
simple. So with this mechanism you can build a server that can speak
both versions of the protocol, that way you don't need to upgrade all your
clients at once.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

